

Planarity Preserving Augmentation of Plane Graphs to Meet Parity Constraints

J.C. Catana-Salazar, A. García, J. Tejel and J. Urrutia

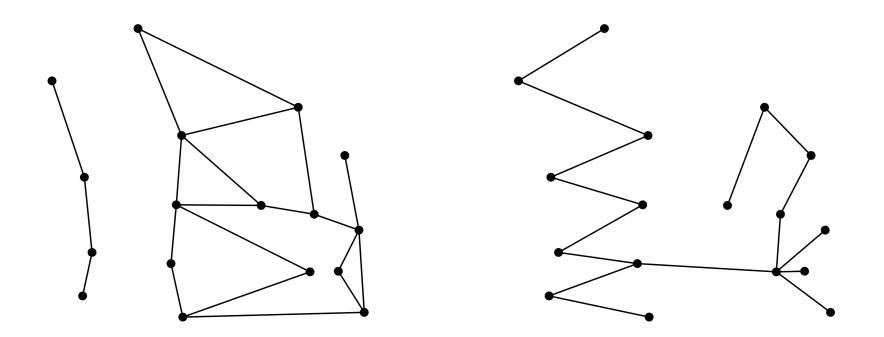
Planarity Preserving Augmentation of Plane Graphs to Meet Parity Constraints

- 1. Introduction
- 2. Fixed-embedding MOPs
 - 2.1.Non-augmentable graph family
 - 2.2.DP algorithm
- 3. Mobile-embedding MOPs
 - 3.1.Non-augmentable graph family
 - 3.2.Polynomial time algorithm
- 4. Complexity in geometric graphs
 - 4.1. NP-Completeness of the augmentation decision problem.
 - 4.2.Hardness heritage of geometric trees & paths.

Definitions

Compatible graphs

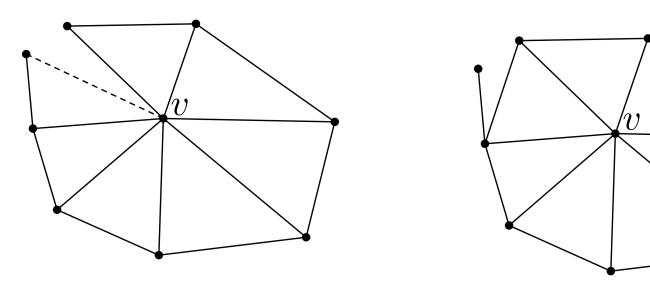
Two or more geometric graphs are compatible if their union is a simple plane graph



Definitions

• Saturated

The neighborhood of a vertex is saturated if there is no edge that can be added in the graph, incident to it, avoiding edge crossing.



v is not saturated

v is saturated

The problem

Given a topological (geometric) plane graph G = (V, E) and a set of parity constraints $C = \{c_1, c_2, \ldots, c_n\}$ where each $v_i \in V$ has assigned the constraint c_i , the augmentation problem to meet parity constraints is that finding a set of edges E, where $E' \cap E = \emptyset$

The problem

 $\bullet v_7$

 v_{2}

$$G = \{V, E\}$$

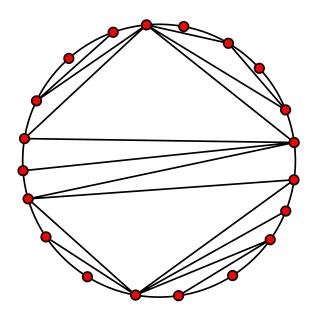
$$V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$$

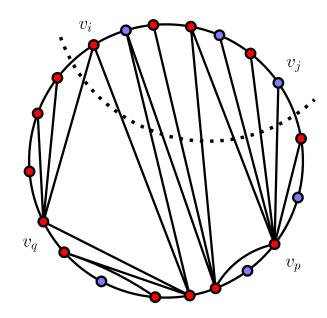
$$C_G = \{o_1, e_2, e_3, e_4, o_5, o_6, e_7, o_8\}$$

$$S(G, C_G) = v_2, v_4, v_5, v_7$$

Fixed-embedding augmentation of MOPs

Non-augmentable graph family

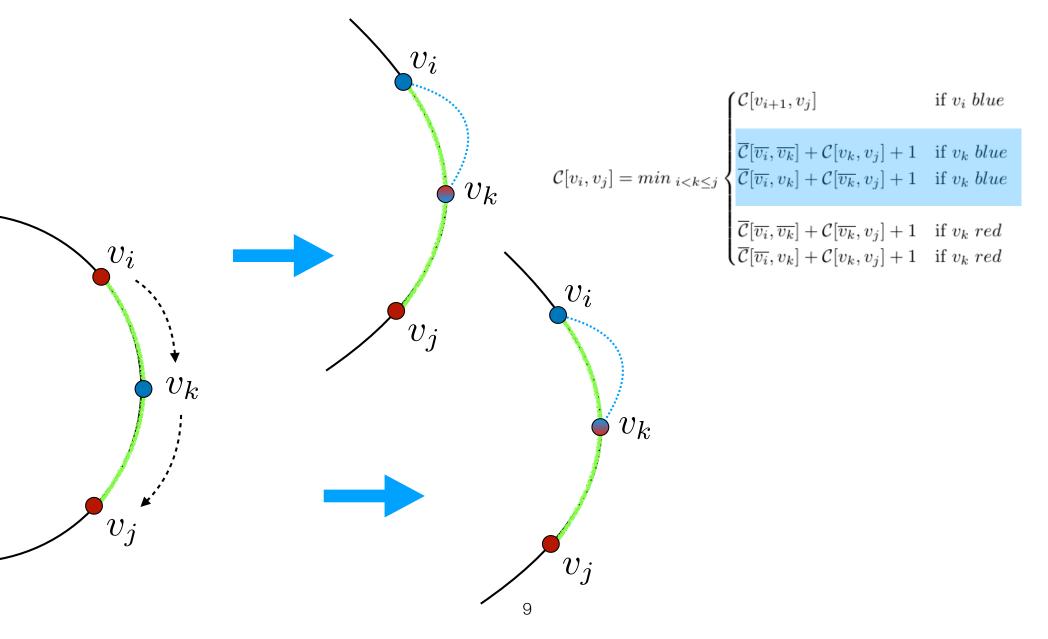




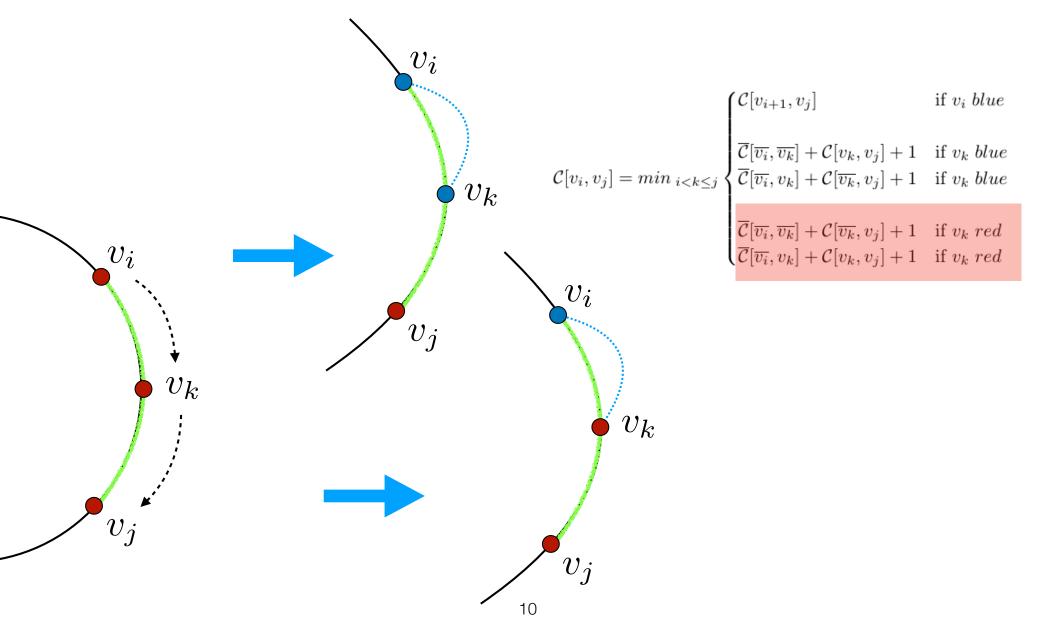
MOP with only red diagonals

MOP with only r-b diagonals

DP algorithm



DP algorithm



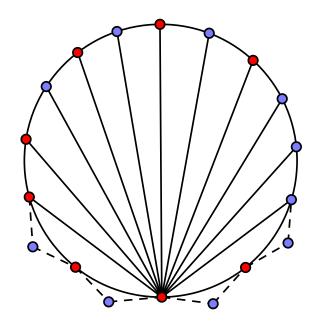
DP algorithm

Theorem 2.5. Let G = (V, E) be a MOP graph and C_G a set of parity constraints. Then, finding a compatible and disjoint graph H = (V, E') with edge set E' of minimum size, such that $G' = G \cup H$ meets C_G , can be computed in $\mathcal{O}(n^3)$ time.

Corollary 2.5.1. Let G = (V, E) be a MOP graph and C_G a set of parity constraints. Then, computing a topological plane matching M of $S(G, C_G)$ compatible and disjoint with G (if exists), can be done in $\mathcal{O}(n^3)$ time.

Mobile-embedding augmentation of MOPs

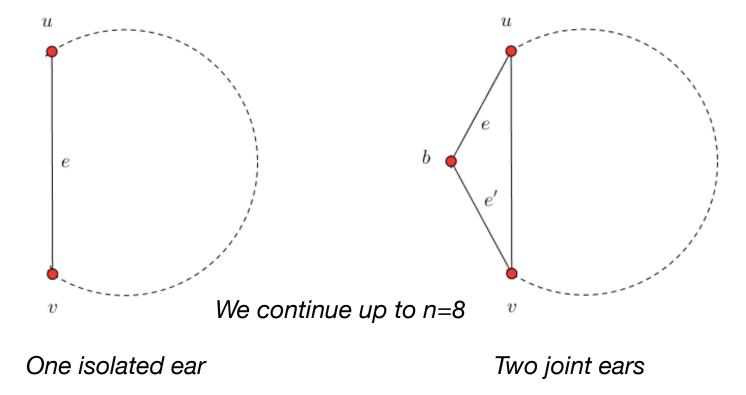
Non-augmentable graph family



Start with possibly 4 blue ears

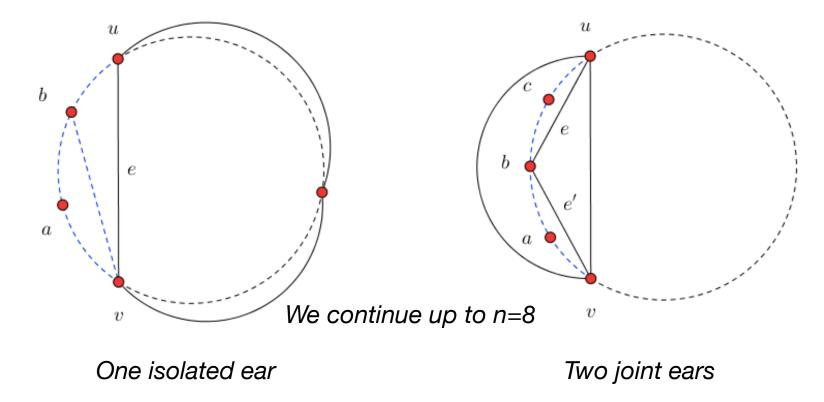
Mobile-embedding augmentation algorithm

Suppose, $\forall v \in V \text{ is red}$



Mobile-embedding augmentation algorithm

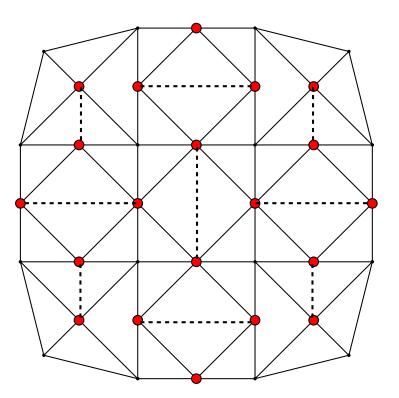
Suppose, $\forall v \in V \text{ is red}$

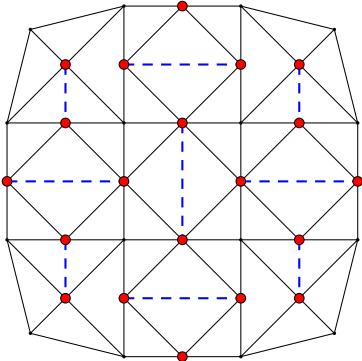


Mobile-embedding augmentation algorithm

Theorem 3.1. Let G = (V, E) be a MOP graph and C_G a set of parity constraints, where $S(G, C_G) = V$. Then, deciding if G has an embedding such that there exists a compatible and disjoint topological graph H, such that $G' = G \cup H$ meets C_G can be computed in $\mathcal{O}(n^2)$ time.

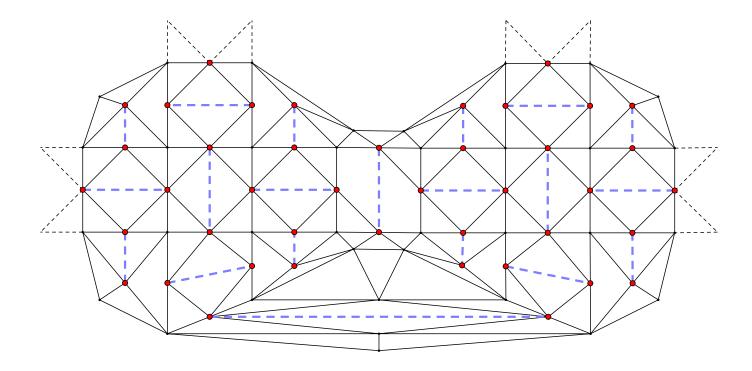
Complexity in geometric graphs



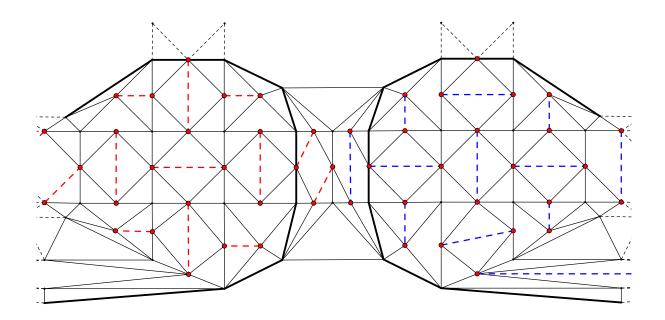


Negative augmentation

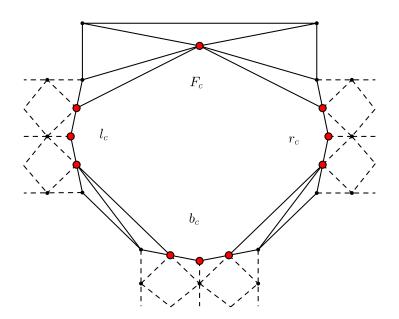
Positive augmentation



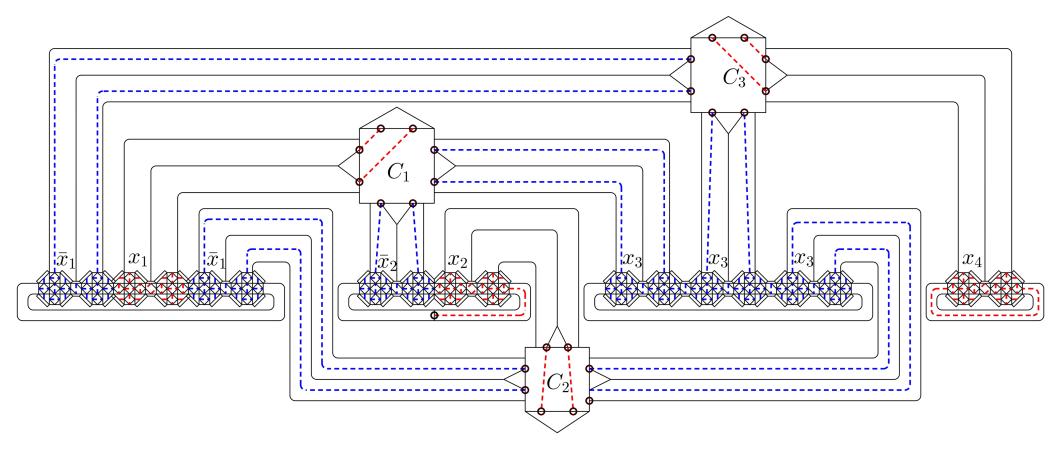
Literal gadget



Connection of two literals

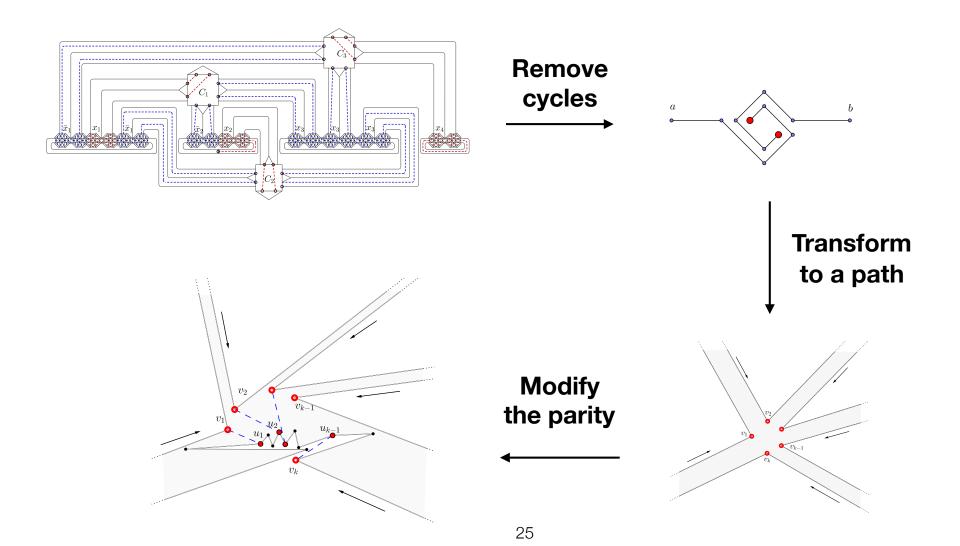


Clause gadget



Theorem 4.1. Let G = (V, E) be a topological plane graph and C_G a set of parity constraints. Then, the problem of deciding if there exists a topological plane graph H disjoint and compatible with G, such that $G' = G \cup H$ meets C_G is \mathcal{NP} -Complete. The problem remains \mathcal{NP} -Complete even when $S(G, C_G) = V$.

Hardness heritage of geometric trees & paths



Hardness heritage of geometric trees & paths

Theorem 4.2. Let T = (V, E) be a geometric plane tree. Then, the problem of deciding if T admits a compatible and disjoint perfect matching is \mathcal{NP} -Complete.

Theorem 4.3. Let P = (V, E) be a geometric plane path. Then, the problem of deciding if P admits a compatible and disjoint perfect matching is \mathcal{NP} -Complete.

Thanks!

and

congratulations to dear professors:

Jin Akiyama, Vašek Chvátal, Mikio Kano, János Pach,

and (specially)

Jorge Urrutia

