

Planarity Preserving
 Augmentation of Plane Graphs to Meet Parity Constraints

J.C. Catana-Salazar, A. García, J. Tejel and J. Urrutia

Planarity Preserving Augmentation of Plane Graphs to Meet Parity Constraints

1. Introduction
2. Fixed-embedding MOPs
2.1.Non-augmentable graph family
2.2.DP algorithm
3. Mobile-embedding MOPs
3.1.Non-augmentable graph family
3.2.Polynomial time algorithm
4. Complexity in geometric graphs
4.1. NP-Completeness of the augmentation decision problem.
4.2. Hardness heritage of geometric trees \& paths.

Definitions

- Compatible graphs

Two or more geometric graphs are compatible if their union is a simple plane graph

Definitions

- Saturated

The neighborhood of a vertex is saturated if there is no edge that can be added in the graph, incident to it, avoiding edge crossing.

v is not saturated

v is saturated

The problem

Given a topological (geometric) plane graph $G=(V, E)$ and a set of parity constraints $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ where each $v_{i} \in V$ has assigned the constraint c_{i}, the augmentation problem to meet parity constraints is that finding a set of edges E^{\prime}, where

$$
E^{\prime} \cap E=\emptyset
$$

The problem

$$
\begin{aligned}
& G=\{V, E\} \\
& V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\} \\
& C_{G}=\left\{o_{1}, e_{2}, e_{3}, e_{4}, o_{5}, o_{6}, e_{7}, o_{8}\right\} \\
& S\left(G, C_{G}\right)=v_{2}, v_{4}, v_{5}, v_{7}
\end{aligned}
$$

Fixed-embedding augmentation of MOPs

Non-augmentable graph family

MOP with only red diagonals

MOP with only r-b diagonals

DP algorithm

DP algorithm

DP algorithm

Theorem 2.5. Let $G=(V, E)$ be a MOP graph and C_{G} a set of parity constraints. Then, finding a compatible and disjoint graph $H=\left(V, E^{\prime}\right)$ with edge set E^{\prime} of minimum size, such that $G^{\prime}=G \cup H$ meets C_{G}, can be computed in $\mathcal{O}\left(n^{3}\right)$ time.

Corollary 2.5.1. Let $G=(V, E)$ be a MOP graph and C_{G} a set of parity constraints. Then, computing a topological plane matching M of $S\left(G, C_{G}\right)$ compatible and disjoint with G (if exists), can be done in $\mathcal{O}\left(n^{3}\right)$ time.

Mobile-embedding augmentation of MOPs

Non-augmentable graph family

Start with possibly 4 blue ears

Mobile-embedding augmentation algorithm

Suppose, $\forall v \in V$ is red

Two joint ears

Mobile-embedding augmentation algorithm

Suppose, $\forall v \in V$ is red

One isolated ear

Two joint ears

Mobile-embedding augmentation algorithm

Theorem 3.1. Let $G=(V, E)$ be a MOP graph and C_{G} a set of parity constraints, where $S\left(G, C_{G}\right)=$ V. Then, deciding if G has an embedding such that there exists a compatible and disjoint topological graph H, such that $G^{\prime}=G \cup H$ meets C_{G} can be computed in $\mathcal{O}\left(n^{2}\right)$ time.

Complexity in

geometric graphs

NP-Completeness of the augmentation decision problem

NP-Completeness of the augmentation decision problem

Negative augmentation

Positive augmentation

NP-Completeness of the augmentation decision problem

Literal gadget

NP-Completeness of the augmentation decision problem

Connection of two literals

NP-Completeness of the augmentation decision problem

Clause gadget

NP-Completeness of the augmentation decision problem

NP-Completeness of the augmentation decision problem

Theorem 4.1. Let $G=(V, E)$ be a topological plane graph and C_{G} a set of parity constraints. Then, the problem of deciding if there exists a topological plane graph H disjoint and compatible with G, such that $G^{\prime}=G \cup H$ meets C_{G} is $\mathcal{N} \mathcal{P}$-Complete. The problem remains $\mathcal{N P}$-Complete even when $S\left(G, C_{G}\right)=V$.

Hardness heritage of geometric trees \& paths

Remove cycles

Transform to a path

Hardness heritage of geometric trees \& paths

Theorem 4.2. Let $T=(V, E)$ be a geometric plane tree. Then, the problem of deciding if T admits a compatible and disjoint perfect matching is $\mathcal{N P}$-Complete.

Theorem 4.3. Let $P=(V, E)$ be a geometric plane path. Then, the problem of deciding if P admits a compatible and disjoint perfect matching is $\mathcal{N} \mathcal{P}$-Complete.

Thanks!

and

congratulations to dear professors:

Jin Akiyama,

 Vašek Chvátal, Mikio Kano, János Pach,
and (specially)

Jorge Urrutia

