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Definitions

« Compatible graphs

Two or more geometric graphs are compatible If their
union I1s a simple plane graph
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Definitions

* Saturated

The neighborhood of a vertex Is saturated If there Is no
edge that can be added in the graph, incident to It, avoiding
edge crossing.

v IS not saturated v Is saturated



The problem

Given a topological (geometric) plane graph G = (V, E)and a set of
parity constraints C = {c1,¢9,...,¢,} where each v; € V has
assigned the constraint c¢;, the augmentation problem to meet parity

constraints is that finding a set of edges Ewhere
E'NE =10



The problem

V = {Ula v2, U3, V4, Vs, Ug, U7, US}

Ca = {01, €2,¢€3, 4,05, 06, €7,08 }
S(G,CG) — VU2, U4, Us, Ut




Fixed-embedding
augmentation of MOPs



Non-augmentable graph
family

MOP with only red diagonals MOP with only r-b diagonals



DP algorithm
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DP algorithm
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DP algorithm

Theorem 2.5. Let G = (V, E) be a MOP graph and C¢ a set of parity constraints. Then, finding a

compatible and disjoint graph H = (V, E') with edge set E' of minimum size, such that G' = GU H
meets C'e;, can be computed in 0(7'1.3) time.

Corollary 2.5.1. Let G = (V,FE) be a MOP graph and C¢g a set of parity constraints. Then,

computing a topological plane matching M of S(G,C¢q) compatible and disjoint with G (if exists),
can be done in O(n3) time.
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Mobile-embedding
augmentation of MOPs



Non-augmentable graph
family

Start with possibly 4 blue ears
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Mobile-embedding
augmentation algorithm

Suppose, Vv € V isred

v We continue up ton=8 v

One isolated ear Two joint ears
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Mobile-embedding
augmentation algorithm

Suppose, Vv € V isred

u

We continue up to n=8 v

One isolated ear Two joint ears
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Mobile-embedding
augmentation algorithm

Theorem 3.1. Let G = (V, E) be a MOP graph and C¢ a set of parity constraints, where S(G,Cg) =
V. Then, deciding if G has an embedding such that there exists a compatible and disjoint topological
graph H, such that G' = G U H meets Cq can be computed in O(n?) time.
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Complexity in
geometric graphs



NP-Completeness of the
augmentation decision problem




NP-Completeness of the
augmentation decision problem

Negative augmentation Positive augmentation



NP-Completeness of the
augmentation decision problem

Literal gadget
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NP-Completeness of the
augmentation decision problem

Connection of two literals
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NP-Completeness of the
augmentation decision problem

Clause gadget
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NP-Completeness of the
augmentation decision problem
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NP-Completeness of the
augmentation decision problem

Theorem 4.1. Let G = (V, E) be a topological plane graph and Cg a set of parity constraints.
Then, the problem of deciding if there exists a topological plane graph H disjoint and compatible with
G, such that G' = G'\U H meets Cq is NP-Complete. The problem remains N'P-Complete even
when S(G,Cq) =V.
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Hardness heritage of
geometric trees & paths
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Transform
to a path



Hardness heritage of
geometric trees & paths

Theorem 4.2. Let T = (V, E) be a geometric plane tree. Then, the problem of deciding if T admits
a compatible and disjoint perfect matching is N'P-Complete.

Theorem 4.3. Let P = (V, E) be a geometric plane path. Then, the problem of deciding if P admits
a compatible and disjoint perfect matching is N'P-Complete.
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