Efficient Counting of the Number of Independent Sets on Polygonal Trees

Dr. Guillermo de Ita Luna M.C. Meliza Contreras González M. C. Pedro Bello López M. C. Juan Carlos Catana Salazar

8th Mexican Conference on Pattern Recognition
(R)

What is an independent set?

- In graph theory, an independet set is a set of vertices of a graph G, where any pair of them are adjacents in G.

What is an independent set?

- The maximum independent set is the independent set of maximum cardinality.

What is an independent set?

- The number of independent sets refers to, how many differents idependent set does G has?

Motivation

- In mathematical chemistry, a molecular graph is a representation of the structural formula of a chemical compound in terms of graph theory.

Motivation

- For instance phenylene, poly-phenylyne and berzenoids has a particular structural patterns (polygonal graphs).

Pyrene

Phenanthrene

Naphthalene

Benzo[c]phenanthrene

Benz[a]anthracene

Anthracene

Triphenylene

Tetracene

Motivation

- This molecular graphs presents a few intereting invariants like:
- Hosoya index
- Merrifield-Simmons index

The Merrifield-Simmons index was introduced by Merrifield and Simmons in 1989, they are one of the topological indices whose mathematical properties turned out to be applicable to several questions of molecular chemistry.

Motivation

■ The definition of the Merrifiel-Simmons index:

■ Where $\boldsymbol{m s}(\mathbf{G}, \mathbf{k})$, is the number of ways in which k mutually independent vertices can be chosen in G.

What do we know about $\operatorname{NI}(G)$?

- The bad news $;$
- Countig the number of independet sets is NP-Complete, even on 3 -regular graphs.

■ The good news!, there are polynomial algoritthms for:

- Chordal graphs.
- Grid graphs.
- There is known extremal values for a few more families.
- And © we present (now) a new way to compute NI(G) over polygonal trees.

Counting the $\operatorname{NI}\left(P_{6}\right)$

- Counting the $\operatorname{NI}\left(P_{6}\right)$ with the Fibonacci recurrence.
- We initialize $\left(\alpha_{1}, \beta_{1}\right)=(1,1)$
- α_{i} denotes the $\operatorname{NI}\left(P_{i}\right)$ where v_{i} does not participates.
- β_{i} denotes the $N I\left(P_{i}\right)$ where v_{i} participates.
$-\left(\alpha_{\mathrm{i}}, \beta_{\mathrm{i}}\right)=\left(\alpha_{\mathrm{i}-1}+\beta_{\mathrm{i}-1}, \alpha_{\mathrm{i}-1}\right)$

$$
\operatorname{NI}\left(P_{6}\right)=\alpha_{6}+\beta_{6}=21
$$

Counting the $\operatorname{NI}\left(C_{6}\right)$

■ Counting the $\operatorname{NI}\left(C_{6}\right)$ with the Fibonacci recurrence.

The Merrifield-Simmons index of

Pentalene

■ Pentalene (Pl) is a polycyclic hydrocarbon composed of two fused cyclopentadiene rings.

The Merrifield-Simmons index of

Pentalene

- Pentalene (Pl) is a polycyclic hydrocarbon composed of two fused cyclopentadiene rings.

The Merrifield-Simmons index of

Pentalene

- Pentalene (Pl) is a polycyclic hydrocarbon composed of two fused cyclopentadiene rings.

The Merrifield-Simmons index of

Pentalene

■ Pentalene (Pl) is a polycyclic hydrocarbon composed of two fused cyclopentadiene rings.

12) (α, β)
14) $(\alpha+\beta, \alpha)$
11) $(2 \alpha+\beta, \alpha+\beta)$
$(2(89 \alpha+33 \beta)+(55 \alpha)$, $89 \alpha+33 \beta+55 \alpha)$
9) $(322 \alpha+99 \beta, 144 \alpha+33 \beta)$
13) $(466 \alpha+132 \beta, 322 \alpha+99 \beta)$
$N I(P I)=(788 \alpha+231 \beta+466 \alpha)$

The Merrifield-Simmons index of Triphenylene

■ Is a flat polycyclic aromatic hydrocarbon (PAH) consisting of four fused benzene rings.

$(8 \alpha+5 \beta, 5 \alpha)$

$(8 \alpha+5 \beta, 5 \alpha)$

The Merrifield-Simmons index of

 Triphenylene

The Merrifield-Simmons index of Triphenylene

Efficient Counting of the Number of Independent Sets on Polygonal Trees

Thanks for your attention.

Questions?

