Beacon Coverage in Orthogonal Polyhedra

I. Aldana-Galván* J.L. Álvarez-Rebollar ${ }^{\dagger}$ J.C. Catana-Salazar* N. Marín-Nevárez*
E. Solís-Villarreal ${ }^{*} \quad$ J. Urrutia ${ }^{\ddagger} \quad$ C. Velarde ${ }^{\S}$

Beacon coverage

Beacon coverage

Vertex and edge beacon coverage in 3D

Beacon coverage problems in orthogonal polygons and orthogonal polyhedra

Polygons	Interior	Lower bound	Upper bound
	Interior-Exterior	[Bae et al. 2016]	$\mathrm{n} / 6$
[Bae et al. 2016]			
Polyhedra*	Interior	?	$\mathrm{n} / 4$
	Interior-Exterior	e/21	e/12

* Vertex beacons are not sufficient to cover the interior of any general polyhedra [Cleve J. 2017]

Covering the interior of orthogonal polygons

July 26-28, 2017
Carleton University 29th Canadian Conference on
Computational Ceometry

Ottawa, Ontario

Covering the interior-exterior of orthogonal polygons

Covering the interior-exterior of orthogonal polygons

Theorem 1 Let P be an orthogonal polygon (possibly with holes) with n vertices. Then $\left\lfloor\frac{n}{4}\right\rfloor+1$ vertex beacons are always sufficient to simultaneously cover the interior and the exterior of P.

Counterexamples of non coverable orthogonal polyhedra.

Counterexamples of non coverable orthogonal polyhedra.

Counterexamples of non coverable orthogonal polyhedra.

Covering the interior of orthogonal polyhedra

There exist an orientation with at most e/3 edges, and one class with at most e/12 edges.

Covering the interior of orthogonal polyhedra

Theorem 3 Let P be an orthogonal polyhedron with e edges. Then $\left\lfloor\frac{e}{12}\right\rfloor$ edge beacons are always sufficient to cover P.

Lower bound on the number of beacons to

 cover the interior

Lower bound on the number of beacons to

 cover the interior

Lower bound on the number of beacons to cover the interior

Theorem 4 There exists a family of orthogonal polyhedra with e edges, such that $\left\lfloor\frac{e}{21}\right\rfloor$ edge beacons are necessary to cover their interior.

Covering the interior-exterior of orthogonal polyhedra

Theorem 5 Let P be an orthogonal polyhedron with e edges. Then $\left\lfloor\frac{e}{6}\right\rfloor$ edge beacons are always sufficient to simultaneously cover the interior and exterior of P.

Beacon coverage problems in orthogonal polygons and orthogonal polyhedra

	Coverage	Lower bound	Upper bound
Polygons	Interior	$\mathrm{n} / 6$	[Bae et al. 2016]

Thanks for your attention!

©

