Strong Chromatic Illumination of Orthogonal Polygons and Polyhedra with $\pi / 2$ - and π-floodlights and segments

I. Aldana-Galván*1, J.L. Álvarez-Rebollar ${ }^{\dagger 2}$, J.C. Catana-Salazar ${ }^{\ddagger 1}$, N. Marín-Nevárez ${ }^{\S 1}$, E. Solís-Villarreal ${ }^{\mathbb{1} 1}$, J. Urrutial ${ }^{\| 3}$, and C. Velarde**4
${ }^{1}$ Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México, Ciudad de México, México
${ }^{2}$ Posgrado en Ciencias Matemáticas, Universidad Nacional Autónoma de México, Ciudad de México, México
${ }^{3}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad de México, México
${ }^{4}$ Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de México, México

1 Introduction

Let P be an orthogonal polygon (polyhedron) in \mathbb{R}^{2} $\left(\mathbb{R}^{3}\right)$. We say that two points $p, q \in P$ are orthogonally visible if the smallest axis-aligned box (an axisaligned rectangle in \mathbb{R}^{2} or an axis-aligned cuboid in \mathbb{R}^{3}) containing them is contained in P. We consider a chromatic variation of the Art Gallery Problem on orthogonal polygons and orthogonal polyhedra under orthogonal visibility. A point p is illuminated by a point q if it is orthogonally visible from q. A set of points G illuminates P if every point in P is orthogonally visible from at least one element of G. In this paper we will assume that the elements of G have been assigned a color. From now on we will refer to orthogonal visibility simply as visibility.

A set G of colored points of a polygon or polyhedron P strongly illuminates P if every element p of P is visible from at least one element of G, and all the elements of G that see p have different color. We want to find the smallest number $\chi(n)$ of colors such that any n-vertex polygon or polyhedron can be strongly illuminated with a set of points using $\chi(n)$ colors. In this paper we will be using α-floodlights, or their generalizations in \mathbb{R}^{3} to illuminate our polygons

[^0]or polyhedron.
In the plane an α-floodlight f is a light source that emits light within a cone of angular size α bounded by two rays emanating from a point p, called the apex of f. In this paper, we will be dealing with α-floodlights of sizes π and $\pi / 2$. In most of the cases we show how to illuminate the interior, the exterior, or the interior and the exterior of a polygon or polyhedron with α floodlights or their generalization in \mathbb{R}^{3}.

2 Related work

In 1973, V. Klee posed the following problem: How many lights are always sufficient to illuminate the interior of an art gallery represented by a simple polygon on the plane with n vertices? V. Chvátal proved in [3] that $\left\lfloor\frac{n}{3}\right\rfloor$ lights are always sufficient and sometimes necessary. Since then, illumination problems have been studied by many authors. The book by J. O'Rourke [7], and the surveys by T. Shermer [8] and J. Urrutia [9] are good sources of information on art gallery problems.

Floodlight illumination problems were initially studied in 1997, see [2, 9]. A chromatic version of the problem was studied in [4]. The problem was motivated by applications in distributed robotics, where colors indicate the wireless frequencies assigned to a set of covering landmarks, so that a mobile robot can always communicate with at least one landmark without interference. A chromatic version using floodlights was studied in [6]. A chromatic version with conflict free illumination was studied in [1]. A chromatic version with conflict free illumination using guards with orthogonal visibility was studied in [5]. We present some of the results of the chromatic variant of the Art Gallery Problem in Table 1.

Table 1: Previous Results
Bounds on the chromatic number Simple Polygons

Bounds on the chromatic number				
Simple Polygons				
Polygon	lower	upper	C/V/ α	Ref
Spiral		≤ 2	st/l/2	[4]
Monotone	$\Omega(\sqrt{n})$		st/l/2	[4]
General	$\Omega(n)$	$O(n)$	st/l/2	[4]
Monotone		$O(\log n)$	cf/l/ 2π	[1]
General		$O\left(\log ^{2} n\right)$	cf/l/2	[1]
General	1	1	st/l/ $\leq \pi$	[6]
Orthogonal Polygons				
Stair		≤ 3	st/l/2	[4]
Monotone	$\Omega(\sqrt{n})$		st/l/2 2	[4]
General	$\Omega\left(\frac{\log ^{2} n}{\log ^{3} n}\right)$		cf/l/2 2	[5]
General	$\Omega(\log n)$	$O(\log n)$	st/l/2	[1][5]
General	$\Omega\left(\log ^{2} n\right)$	$O\left(\log ^{2} n\right)$	cf/r/2	[5]
C:Color type (cf:Conflict free st: Strong). V:Visibility model (l:standar r:orthogonal). α :Size of visibility.				

3 Preliminaries

We study first a chromatic variation of the Art Gallery Problem on simple orthogonal polygons. Observe that the internal angle at any vertex of an orthogonal polygon is of size $\pi / 2$ or $3 \pi / 2$. A vertex with internal angle size $\pi / 2$ is called a convex vertex and a vertex with internal angle size $3 \pi / 2$ is called a reflex vertex.
A polyhedron in \mathbb{R}^{3} is a compact set bounded by a piecewise linear 2-manifold. A face of a polyhedron is a maximal planar subset of its boundary whose interior is connected and non-empty. A polyhedron is orthogonal if all of its faces are parallel to the $x y$-, $x z-$ or $y z$-planes. The faces of an orthogonal polyhedron are orthogonal polygons with or without orthogonal holes. A vertex of a polyhedron is a vertex of any of its faces. An edge is a minimal positive-length straight line segment shared by two faces and joining two vertices of the polyhedron. A polyhedron P is a lifting polyhedron if there exists an $x y$-plane Z such that for all planes parallel to Z their intersection with P is either empty, or it is a vertical translation of $P \cap Z$.
For any polygon (polyhedron) $P,|P|$ denotes the number of vertices of $P, \partial P, \operatorname{int}(P)=P-\partial P$, and $\operatorname{ext}(P)=\mathbb{R}^{2}-P\left(\operatorname{ext}(P)=\mathbb{R}^{3}-P\right)$ denote, respectively, the boundary, the interior and the exterior of $P . \chi(P, \alpha), \chi(\operatorname{ext}(P), \alpha)$, and $\chi(P \cup \operatorname{ext}(P), \alpha)$ denote the smallest integer such that there is a set of α-guards, colored with $\chi(P, \alpha), \chi(\operatorname{ext}(P), \alpha)$, and $\chi(P \cup \operatorname{ext}(P), \alpha)$ colors that strongly illuminates P, $\operatorname{ext}(P)$, and $P \cup \operatorname{ext}(P)$. For any point p the visibility polygon (visibility polyhedron) is the set of points visible from p.

Let P_{1} and P_{2} be two subpolygons (subpolyhedra) of P. We call P_{1} and P_{2} independent if no point in P can simultaneously see points from $\operatorname{int}\left(P_{1}\right)$ and $\operatorname{int}\left(P_{2}\right)$.

For a polygon P in the plane an edge e of P is a right edge if there is an $\varepsilon>0$ such that any point at distance less than or equal to ε from any interior point of e and to the left of e belongs to the interior of P. Left, top and bottom edges are defined similarly. The windows of a subpolygon P^{\prime} in P are those parts of ∂P^{\prime} that do not belong to ∂P. A window of P^{\prime}
is a bottom window in P if the window belongs to a bottom edge of P^{\prime}. Similarly we define an upper window, a left window and a right window.

For a given floodlight f, the beginning of f is the oriented half-line starting at the apex of f, that leaves the area illuminated by f to its right, and the area not illuminated by f to its left. The end of f is defined in a similar way. Given a floodlight f, its orientation is the value of the (non-negative) angle between the positive x-axis to the beginning of f.

We proceed now to extend the concept of floodlights to \mathbb{R}^{3}. A wedge in \mathbb{R}^{3} is the intersection, or the union of two halfspaces whose supporting planes intersect. The line of intersection of the supporting planes is called the axis of the wedge. A wedge is called small, if it is the intersection of two halfspaces. It is called large if it is the union of two halfspaces. Note that if a wedge \mathcal{W} is small, then the intersection of \mathcal{W} with a plane orthogonal to the axis of \mathcal{W}, determines an angular region \mathcal{A} of size α less than or equal to π, if \mathcal{W} is a big wedge, then α is greater than π. The wedge \mathcal{W} will be called an α-wedge. An orthogonal wedge in \mathbb{R}^{3} is the intersection or the union of two halfspaces whose supporting planes are orthogonal. If an orthogonal wedge is small, it is a $\frac{\pi}{2}$-wedge, if it is large it is a $\frac{3 \pi}{2}$-wedge. An α-segment guard f of P placed on a segment s in P, guards all of the points of P visible from s and contained in an α-wedge whose axis contains s. We assume that an α-segment guard f can be rotated about its axis until it reaches a desired final orientation. In the rest of this paper we will assume that our α-segment guards are always placed in such a way that their supporting planes are parallel to the $x y$-, $x z$ - or $y z$-planes of \mathbb{R}^{3}. We will use α-segment guards f such that they illuminate only points p within an α wedge, with the additional restriction that the shortest line segment joining p to f is a line segment orthogonal to f.

4 Orthogonally illuminating orthogonal polygons with floodlights of size $\pi / 2$ and π

Theorem 1 Let P be an orthogonal polygon with $|P|=n$. Then $\chi\left(P, \frac{\pi}{2}\right)=1$.

Proof. To prove our result, we will show how to illuminate P with a set of $\frac{\pi}{2}$-floodlights in such a way that no point in P is illuminated by two $\frac{\pi}{2}$-floodlights. Place $\frac{\pi}{2}$-floodlights on P using the following algorithm:

1. Place a $\frac{\pi}{2}$-floodlight f on the right vertex of a top edge of P with $3 \pi / 2$ orientation, and let P^{\prime} be the area illuminated by this floodlight. Observe that since we are considering orthogonal visibility, P^{\prime} is an orthogonal polygon.
2. Suppose $P^{\prime} \neq P$, otherwise we are done. Then recursively place a $\frac{\pi}{2}$-floodlight on the right ver-
tex of every bottom window of P^{\prime} with $3 \pi / 2$ orientation, increasing the illuminated area P^{\prime}.
3. Continue this process recursively until P^{\prime} has no more bottom windows. If $P^{\prime}=P$ we are done.
4. Suppose that $P^{\prime} \neq P$. Recursively proceed as follows: Each orthogonal subpolygon $P^{\prime \prime}$ of $P-P^{\prime}$ has one or two edges containing windows of P^{\prime}. In the first case, we proceed as follows: Suppose that $P^{\prime \prime}$ has a left edge e containing a right window of P^{\prime}. Rotate $P^{\prime \prime}$ until e becomes a top edge, and repeat the process above starting at the right vertex of e. Proceed in a similar way with the top and the left windows of P^{\prime}. In the second case, these two edges are incident to a vertex v of $P^{\prime \prime}$. Rotate $P^{\prime \prime}$ until v becomes part of a top edge, and restart the process at v from step one.
Observe that every floodlight placed in steps 1 and 3 is placed with $3 \pi / 2$ orientation on a bottom window, illuminating an area that is below P^{\prime}, not illuminated by f. Therefore no point in P^{\prime} is illuminated by two floodlights. By the same reason, it is easy to see that no point in P is illuminated by two floodlights placed during the execution of Steps 2 and 3.

Using the same arguments we can see that in Step 4, when we illuminate the connected components of $P-P^{\prime}$ no point in P is illuminated by two floodlights. Clearly at the end of our procedure the whole of P is illuminated.

Figure 1: Illumination of the interior and exterior of a polygon with $\frac{\pi}{2}$-floodlights.

Theorem 2 Let P be an orthogonal polygon with $|P|=n$. Then $\chi\left(\operatorname{ext}(P), \frac{\pi}{2}\right)=1$.
Proof. Let B be the smallest bounding box of P. Let $\mathcal{P}=\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right\}$ be the set of polygons that are the connected components of $B-P$. To illuminate the exterior of P, we need to illuminate the polygons in \mathcal{P} as well as the exterior of B. Consider first the polygons $\mathcal{P}_{i} \in \mathcal{P}$ such that one of their top edges belongs to the boundary of B, e.g. \mathcal{P}_{1} in Figure 1. Illuminate these polygons using the algorithm in Theorem 1, and starting by placing a floodlight on its right endpoint.

In a similar way we can illuminate the orthogonal polygons in \mathcal{P} containing a left, bottom, or right edge
in B. Observe that while illuminating the polygons in \mathcal{P}, some of the light used to illuminate them will "spill out" and illuminate all of the exterior of B except for four "quadrants" with apices at B. These quadrants can be illuminated with a $\frac{\pi}{2}$-floodlight placed at their apices, see Figure 1. Our result follows, as no point is illuminated by two $\frac{\pi}{2}$-floodlights.

Theorems 1 and 2 imply the following theorem:
Theorem 3 Let P be an orthogonal polygon with $|P|=n$. Then $\chi\left(P \cup \operatorname{ext}(P), \frac{\pi}{2}\right)=1$.

Theorem 4 Let P be an orthogonal polygon with $|P|=n$ and h holes. Then $2 \leq \chi\left(P, \frac{\pi}{2}\right) \leq h+1$.

Proof. Consider the set of lines $\mathcal{L}=\left\{l_{1}, l_{2}, \ldots, l_{k}\right\}$ parallel to the x-axis that contain the lowest bottom edges of the holes of P, labelled in such a way that if $i<j$ the y-coordinate y_{i} of l_{i} is less than the y coordinate y_{j} of l_{j}. Let l_{0} be a lowest bottom edge of P and l_{k+1} a topmost edge of P. Then, for each $0 \leq i<k$, the set of points of P whose y coordinate belongs to the interval $\left[y_{i}, y_{i+1}\right]$ forms a set P_{i} of subpolygons of P. For each $i=0, \ldots, k$ use Theorem 1 to illuminate all the subpolygons of P_{i} with color i, this can be done since all the elements in each P_{i} are pairwise independent. Since $k \leq h$, we use at most $h+1$ colors to illuminate P. For the lower bound consider Figure 2. Observe that when we illuminate the points a, b, and c either the region A or the region B, say A, will have two zones colored with color one and between them a third zone C not illuminated. In oder to illuminate C a second color must be used, since the visibility polygon of any floodlight that illuminates C overlaps at least one of the illuminated zones of A.

Theorems 4 and 2 imply the following theorem:
Theorem 5 Let P be an orthogonal polygon with $|P|=n$ and h holes. Then $2 \leq \chi\left(P \cup \operatorname{ext}(P), \frac{\pi}{2}\right) \leq$ $h+1$.

Theorem 6 Let P be an orthogonal polygon with $|P|=n$. Then $\chi(P, \pi)=2$.

Proof. We place π-floodlights into P using the Theorem 1 algorithm with the following changes: In steps 1 to 3 we use color one and 0 orientation on the π floodlights placed in the initial edge and the lower windows. In step 4 we use color two on the π floodlights that we place in the polygons $P^{\prime \prime}$ of the recursive step, alternating between color one and color two each time we call the recursion. An intersection between visibility polygons is generated when we place a π-floodlight in a $P^{\prime \prime}$ polygon that has two

Figure 2: (a) An orthogonal polygon P with holes (in gray) s.t. $2 \leq \chi\left(P, k \frac{\pi}{2}\right), k=1,2$. This family grows by adding holes to the polygon. (b) If points a, b, and c are illuminated with color one, then either the region A or the region B, has at least two illuminated zones, and between them, a not illuminated zone, which forces the use of a second color to illuminate the polygon.
edges that are P^{\prime} windows, which is not a problem because they have different colors. For lack of space we omit the proof for the lower bound of our result.

Theorem 7 Let P be an orthogonal polygon with $|P|=n$ and h holes. Then $2 \leq \chi(P, \pi) \leq 2(h+1)$.

Proof. The proof is the same as that of Theorem 4 by substituting Theorem 1 for Theorem 6 . For the lower bound we only use π-floodlights instead of $\frac{\pi}{2}$ floodlights. For the upper bound, the substitution of 1 for Theorem 6 works because the remaining polygons have no holes and can be illuminated using Theorem 6 , which is used to illuminate orthogonal polygons without holes using π-floodlights. By Theorem 6 we need two colors, so the upper bound is $2(h+1)$.

5 Orthogonal illumination of orthogonal polyhedra with α-segments of size $\pi / 2$ and π

Observe first that any orthogonal polyhedron P is the union of lifting polyhedra with pairwise disjoint interiors.

Let $\mathcal{Q}=\left\{Q_{1}, Q_{2}, \ldots, Q_{k}\right\}$ be the set of planes containing the faces of P parallel to the $x y$-plane, s.t. $i<j$ iff the z coordinate z_{i} of Q_{i} is less than the z coordinate z_{j} of Q_{j}. Then, for each $1 \leq i \leq k-1$, the set of points of P whose z coordinate belongs to the interval $\left[z_{i}, z_{i+1}\right]$ form a lifting orthogonal polyhedron P_{i}. Evidently $P=P_{1} \cup \ldots \cup P_{k-1}$.

Let $\mathcal{Q}^{\prime}=\left\{Q_{1}^{\prime}, Q_{2}^{\prime}, \ldots, Q_{k-1}^{\prime}\right\}$ be a set of planes parallel to the $x y$-plane, such that Q_{i}^{\prime} intersects P_{i} midway between Q_{i} and Q_{i+1}. Consider the plane $Q^{\prime} \in \mathcal{Q}^{\prime}$ such that the orthogonal polygon $Q^{\prime} \cap P$ maximizes the number $h_{x y}$ of holes it has. Define in similar way $h_{x z}$ and $h_{y z}$, and let $h=\min \left\{h_{x y}, h_{x z}, h_{y z}\right\}$.

Theorem 8 If $h=0$ then $\chi\left(P, \frac{\pi}{2}\right)=1$, and $\chi(P, \pi) \leq 2$. If $h>0$ then $\chi\left(P, \frac{\pi}{2}\right) \leq h+1$ and $\chi(P, \pi) \leq 2(h+1)$.

Proof. We will sketch the proof for $\chi\left(P, \frac{\pi}{2}\right)=1$, and $h=0$. The others are done in a similar way. Ob-
serve that each P_{i} as defined above is a lifting orthogonal polyhedron. We use $\frac{\pi}{2}$-segments to illuminate it as follows: Let P_{i}^{\prime} be the orthogonal polygon obtained by intersecting Q_{i}^{\prime} with P_{i}. Observe that any placement of $\frac{\pi}{2}$-floodlights that illuminates P_{i}^{\prime} can be transformed into a set of $\frac{\pi}{2}$-segments that illuminate P_{i}, each of length $z_{i+1}-z_{i}$, and perpendicular to the $x y$-plane. By Theorem 1 one such set with $\chi\left(P, \frac{\pi}{2}\right)=1$ exists. This induces a set of $\frac{\pi}{2}$-segments that illuminates P_{i} for which $\chi\left(P, \frac{\pi}{2}\right)=1$. Our result follows.

We are grateful to the anonymous referees for their helpful suggestions.

References

[1] A. Bärtschi and S. Suri. Conflict-free chromatic art gallery coverage. Algorithmica, 68(1):265-283, 2014.
[2] P. Bose, L. Guibas, A. Lubiw, M. Overmars, D. Souvaine, and J. Urrutia. The floodlight problem. International Journal of Computational Geometry \& Applications, 7(01n02):153-163, 1997.
[3] V. Chvátal. A combinatorial theorem in plane geometry. Journal of Combinatorial Theory, Series B, 18(1):39-41, 1975.
[4] L. H. Erickson and S. M. LaValle. An art gallery approach to ensuring that landmarks are distinguishable. In Robotics: Science and Systems, volume 7, pages 8188, 2012.
[5] F. Hoffmann, K. Kriegel, S. Suri, K. Verbeek, and M. Willert. Tight bounds for conflict-free chromatic guarding of orthogonal art galleries. In LIPIcsLeibniz International Proceedings in Informatics, volume 34. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.
[6] H. Hoorfar and A. Mohades. Special guards in chromatic art gallery. In 31th European Workshop on Computational Geometry (EuroCG), 2015.
[7] J. O'Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, Inc., New York, NY, USA, 1987.
[8] T. C. Shermer. Recent results in art galleries (geometry). Proceedings of the IEEE, 80(9):1384-1399, 1992.
[9] J. Urrutia. Art gallery and illumination problems. In J.-R. S. Urrutia, editor, Handbook of Computational Geometry, pages 973 - 1027. North-Holland, Amsterdam, 2000.

[^0]: *Email: ialdana@ciencias.unam.mx. Research supported by PAEP from Universidad Nacional Autónoma de México
 ${ }^{\dagger}$ Email: chepomich1306@gmail.com. Research supported by PAEP from Universidad Nacional Autónoma de México
 \ddagger Email: j.catanas@uxmcc2.iimas.unam.mx. Research supported by PAEP from Universidad Nacional Autónoma de México
 §Email: mnjn16@uxmcc2.iimas.unam.mx. Research supported by PAEP from Universidad Nacional Autónoma de México

 IEmail: solis_e@uxmcc2.iimas.unam.mx. Research supported by PAEP from Universidad Nacional Autónoma de México
 $\|^{\|}$Email: urrutia@matem.unam.mx. Research supported by PAPIIT IN102117 from Universidad Nacional Autónoma de México
 **Email: velarde@unam.mx

