

367

A NOVEL GREEDY HEURISTIC FOR THE RESOURCECONSTRAINED
PROJECT SCHEDULING PROBLEM

De Ita Guillermo*, Moyao Yolanda* Soriano Marcela*, Catana Juan*

Abstract. We model a scheduling of multi-projects via intelligent agents, each one of which has
to perform a Project. We consider that some tasks need common and limited resources available
to all multi-agent system.
The agents are non-cooperative, and they compete with others for the common resources,
forming so instances of the Resource Constrained Project Scheduling Problem (RCPS).
We design a novel greedy heuristic for solving the RCPS problem. Our heuristic works in an
incremental way, building partial scheduling while it determines an order for performing
overlapping conflicting tasks. The resulting algorithm has polynomial time complexity over the
number of tasks and shared resources.
Keywords: Intelligent Agents, RCPS Problem, Job-Shop Problem, Greedy heuristic

Resumen. Modelamos una calendarización de multi-proyectos vía agentes inteligentes, cada uno
de los cuales debe ejecutar un proyecto. Consideramos que algunas tareas necesitan recursos
compartidos y limitados disponibles para todo el sistema de multi-agentes.
Los agentes no son cooperativos entre sí, y ellos compiten con los demás por el recurso
compartido, formando así instancias de Problemas de Calendarización de Proyectos con
Recursos en Conflicto (RCPS por sus siglas en ingles).
Diseñamos una nueva y pretenciosa heurística para la resolución de problemas RCPS. Nuestra
heurística trabaja de una forma incremental, construyendo calendarizaciones parciales mientras
determine un orden para la ejecución de tareas en conflicto de traslape. El resultado del
algoritmo tiene un tiempo de complejidad polinomial sobre el número de tareas y recursos
compartidos.
Palabras clave: Agentes inteligentes, Problema RCPS, Problemas Job-Shop, Heurística
pretenciosa.

1 INTRODUCTION

During the seventies, computer scientists discovered scheduling as a tool for improving the
performance of computer systems. Furthermore, scheduling problems have been investigated and
classified with respect to their computational complexity. During the last few years, new and
interesting scheduling problems have been formulated in connection with flexible manufacturing.
 An important problem in project management is the allocation of scare resources to
competing activities in order to minimize overall project duration. The commonly used critical
path method (CPM), assumes that unlimited resources are available, and that activities requiring a
common resource can be carried out in parallel. In this article, we analyze the problems of
scheduling a set of projects which use limited resources. The tasks of the projects share common
resources and then, different sets of conflicting tasks are formed dynamically according with the
order of performing of the previous tasks.

368

 Let },...,{ 1 nAAA be a set of n intelligent agents. Let },...,{ 1 nPPP be the set of n
projects and such that each project PiP has to be performed by the agent .,...,1, niAi A
as it is common, each project PiP consists of a set of interdependent tasks.
 Let },...,{ 1 ittT be the set of different tasks to be carried out so that each agent
accomplishes his project. Some tasks are executed with specialized equipment or by specialized
employees. We consider such equipment or specialized personal as common resources to be used
by the agents in order to accomplish their projects.
 Let },...,{ 1 kEER be the set of common resources of the multi-agent system. As it is
usual, there is a limited number of employees and equipment to be used in the multi-agent system
and as the agents are non-cooperative, they compete with others for the use of the limited
resources. In general, the cost of using resource RrE could represent the time, the price or
any other measure that an agent has to pay for using that resource.
 The resources are common to all agents but as it happens in practical situations, the same
resource is used only for one agent at a particular time, and then a queue of requirements for
service could be associated with each resource.
 To analyze the affect of limiting resource to overall project performance has motivated a
wide amount of researching; one of the related problems more widely studied is the Resource
Constrained Project Scheduling Problem (RCPS).
The RCPS problem consists in finding a schedule of the tasks of a multi-project system with
minimal completion times of the projects and into the constraints of the capacity of the resource
of the system.
 The RCPS problem is a well know and challenging combinatorial optimization problem
which can be seen as a generalization of the Job Shop Scheduling problem and so, this is NP-
Hard in the strong sense [13]. For even moderately sized problems, finding an optimal solution in
a reasonable amount of time can be very difficult. So, RCPS has been utilized as a model to
analyze the effect of limiting resource to overall project performance [13].
 An adequate review of early RCPS heuristics can be found in [5, 14]. Some versions-
extensions of that problem include: multi-project scheduling problem, problems with resource
duration interactions, time window constrains, cash flow restrictions and cost-related objectives
[6, 9, 10, 13].
 Since the RCPS is one of the most intractable problems in Operations Research, it has
recently become a popular playground for the latest optimization techniques, including virtually
all local search paradigms [11]. The last 20 years have witnessed a tremendous improvement of
heuristics, meta-heuristics and exact solution procedures, e.g. see [1-5, 8, 10, 11, 13, 14, 15].
 We present in this article, a novel heuristic for solving the RCPS problem, our heuristic
has a polynomial time complexity over the number of tasks and resources, and it has shown to
obtain good solutions.

https://www.researchgate.net/publication/242916374_Problem_space_search_algorithms_for_resource-constrained_project_scheduling?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/242916374_Problem_space_search_algorithms_for_resource-constrained_project_scheduling?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/242916374_Problem_space_search_algorithms_for_resource-constrained_project_scheduling?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/227445528_A_Comparison_of_Exact_Approaches_for_Solving_the_Multiple_Constrained_Resource_Project_Scheduling_Problem?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/222907666_A_decomposition_approach_to_multi-project_scheduling?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/239806525_Heuristic_Algorithms_for_the_Resource-Constrained_Project_Scheduling_Problem_Classification_and_Computational_Analysis?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==

369

2 THE JOB-SHOP SCHEDULING PROBLEM

 A job-shop scheduling problem can be formulated as a set of n jobs (multi-project)

},...,{ 1 nJJJ to be scheduled on m machines (or by m agents), in our case we will consider n
= m. Each job iJ is formed by in consecutive tasks },...,{ 1 iini ttJ i . There is a sequential order

among the tasks in the same project. The task)(ikt represents the k-th task of the job iJ . Each
task)(ijt has associated a processing time iju and each job iJ must be achieved before a due

time)(idt . The total time that a job iJ needs for completing all its tasks is the completion time
and it is denoted as niCTi ...,1,  (see figure 1).
 Given a set R of finite resources, we consider that different tasks need common
resources available to all multi-project system. As the resource R could be used at a particular
time by only one task, an order for performing the conflicting tasks has to be built. When a set of
tasks require the same resource RR at the same time then a set RCT of conflicting tasks is
formed.
 For example, in figure 1 we can see the different conflicting sets:

},,{ 312111 tttCS1 , },,{ 322212 tttCS2 , },,{ 342313 tttCS3 , },,{ 332414 tttCS4 which are the
initial conflicting set of tasks.
 The RCPS problem continues being a NP-hard problem since the possibilities of
permutations of conflicting tasks which need the same resource. Although for this problem, the
explosive number of permutations depends mainly on the number of sharing resources and the
number of tasks in conflict.
 The restriction for using sharing resources by just one task at a particular time is called
‘Capacity constraint’. For example, for two tasks ikt and jlt of the projects iP and jP which

require the set of resources; kR and lR respectively, they cannot overlap unless  lk RR . The
capacity constraints give rise a list of disjunctive linear inequalities [8] of type:

iklkjlik ttt ()( RR is performed before jlt) jlt( is performed before ikt)

Fig. 1. A Gantt chart where same pattern mean same resource

 Let maxC be the make span (total completion time of the all project), and TD be the total
tardiness for the multi-project system. The multi-objective optimization problem consists roughly
in finding a schedule of the n jobs that minimizes the make span and the total tardiness. If the
task ijt ikt is being scheduled at time ijs , the two objectives can be formulated as follows [12]:

]}...1[|{max1 niwsMaxCf
ii inin 

)},0max([
1

2 iii tinin

n

i

dwsTDf  


https://www.researchgate.net/publication/223589211_Parallel_cooperative_meta-heuristics_on_the_computational_grid_A_case_study_the_bi-objective_Flow-Shop_problem?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==

370

3 NEW GREEDY HEURISTIC FOR THE JOB SHOP PROBLEM

In combinatorial optimization, heuristics allow to iteratively solve in a reasonable time NP-hard
complex problems. We propose a novel greedy heuristic for solving the RCPS problem in an
incremental way. Our proposal is a constructive method for attacking the permutation problem
which resides in sorting the tasks which are in a conflicting set.
 Our proposal, called Ordering, works likely to the knowing heuristic NEH [15], which is
one of the best polynomial time procedure applied for a related problem; the flow-shop problem.
In our proposal, instead of inserting a total project in the Ordering of projects such as occurs in
the NEH algorithm, we are inserting interactively the tasks of the different jobs which request the
same resource during the same interval of time.
 We use one pointer-time ip for each job ;iJ points to the following task in the
project iJ which has to be scheduled. So, we have a n-tuple of n-pointers

}...,{ 1 nppP indicating the set of the following tasks which are waiting for being scheduled.
 At each iteration of our procedure, we determine the minimum time

}.|:{ PppMinT iic  If the task st pointed by cT plus its duration has not conflict with the
other tasks pointed by ,P that is, if)(tpwt jss  for j = 1,…,n, j≠ i, or if the resource that st
requires is not used by the other tasks pointed by P then sp is updated as .sss wpp  That
means that the task st is not in conflicting with the other current tasks to be performed and then

st is executed updating the pointer in P corresponding with .cT
 Otherwise, the task st is in conflict it current tasks of other projects. Then, at least two
tasks pointed by P need the same resource and their respective performing times overlapping.
 Let CS be the first conflicting set and let || CSwN

iiter ino  be the number of tasks to be
ordered. 1

iteroN Determines the number of iterations of the procedure Ordering which builds an
inverse order of execution for the conflicting tasks. In each iteration, Ordering chooses the
project whose completion time increases minimally, when it’s respective conflicting tasks is
executed at the end of the all remaining tasks in CS.

Fig. 2. First step of the procedure Ordering

https://www.researchgate.net/publication/228543024_Hybrid_heuristics_for_the_permutation_flow_shop_problem?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==

371

Algorithm 1 Procedure Ordering
 Input: CS {a set of conflicting tasks}
 Initiate Order = ” “{the inverse order of the conflicting tasks}
 while (|cs| > 1) do
 for each CSs do

Delay(s) =),(
}{ cssCSc

ttgOverlappin 
 {Sum of the overlapping if st is executed at the

end of the tasks in conflict}
CTimes(s) =)(sDelayTTs  {As much as it will extend the completion time for this job}

 end for
));(,(min};:)(min{ sCTimespindextCSssCTimesp ii 
));(,(int};:)(min{ sDelaydindexdCSssDelayd ii 
 if (ii dp ) then
 ;; minmin tt taskorderordertaskCSCS  {It is an optimal selection}
 else
 };:)(max{ CSssCTimesCTTi  {Maximum completion time}
 };:)(max{ CSssDelayDTj  {Maximum delay}
);(ij pCTimesCTTCompTime  {Differential of completion times}
);(ij dDelayDTDelay  {Differential of delays}
 if)(DelaysCompTime  then

;; minmin tt taskorderordertaskCSCS  {Choose task of the project with
minimum growth in its completion time}

 else
 ;; intint dd taskorderordertaskCSCS  {Otherwise
it is guided for minimum growth in delays}

 end if
 end if
 end while {order the remaining tasks in CS}

The selected task st is deleted from CS and the iterative process continues Ordering the
remaining conflicting tasks. So, in each iteration of the main while in Ordering, a conflicting task
st is selected indicating that st has to be performed at the end of the all tasks in CS. Ordering

gives us a total inverse order for performing the conflicting tasks of its input parameter CS.
 Let us see how Ordering works over the example shown in figure 2. Ordering determines
the order of execution of conflicting tasks in an inverse order, i.e. first, it is determined the task
which going to be performed at the end of the conflicting set of tasks, after of this, Ordering find
the task in the following position, and so on, until all the conflicting tasks are considered.
 For determining which tasks is performed at the end of the set of conflicting tasks.
Ordering estimates how its completion time increase if the task is displaces over the other tasks,
and also computes its time of delay, this time going to be added at the total time of project. After
this iteration, Ordering makes the same evaluation but with the next task, once obtain the three

372

new completion times, Ordering choose the task which is minimum over incremental completion
times.
 The Figure 2 represents the result of Ordering after the first iteration, where the tasks 31t
was choose to be performed at the end of the other two conflicting tasks since its incremental
completion time TC3= 75 +28+15 is minimal with respect to the other two possible incremental
completion times.
 Notice that to look for the task which minimizes its completion time via, Ordering
realizes an interaction with just a few neighbors (the remaining conflicting tasks), which is a
basic design principle to guarantee efficient use of resources in a distributed system [7].
 The Figures 3 shows the order of performing for the first tasks of each project.
We can see that the first tasks (black tasks) don’t have more conflicts. Notice how the completion
time of same projects are increased and how they are updating dynamically in each iteration of
our procedure. In Figure 3, we note that only the project 1p maintains its initial completion time.

Fig. 3. Second step of the procedure Ordering

 In each displacement we consider the case that two or more completion times have the
same minimal value, and in the case, we consider as a second parameter for deciding, the delayed
times in each project. So, we check the delay generated by the displacement of each conflicting
task, and tasks with minimum delay are chosen.
 It also important to note that if the differential of delays, which is the differential time
between the last and the first task to be performed, is bigger than the differential of the
incremental completion times, which is computed using the differential of the maximum and
minimum completion time, both of them computed into conflicting set, then Ordering chooses
the project which minimizes the ‘delay time’ of performing more than the completion time.
 An optimal movement in each iteration of Ordering is obtained if the task choosed infer
the lowest growth for its respective completion time as well as it has a minimal growth over its
increased delay time.

4 CONCLUSIONS
We propose a greedy efficient procedure which in incremental way builds a scheduling for the
RCPS problem. Our proposal executes at most N = nnn  ...1 iterations, and in each iteration,
the procedure Ordering is called if exist a set of conflicting tasks. Ordering determines an inverse
order for performing a set of at most n conflicting tasks.
 Given a conflicting set of k tasks, notice that ,nk  Ordering executes at most

)(2kO basic operations. Then our heuristic has a polynomial complexity time of).*(2nNO

373

REFERENCES

[1] C. Artigues, P. Michelon, S. Reusser, Insertion Techniques for static and dynamic resource constrained

project scheduling, European Journal of Operational Research 149, (2003), pp. 2 49-267.
[2] T. Baar, P. Brucker, S. Knust, Tabu-search algorithms and lower bounds for the resource-constrained project

scheduling problem, Meta-heuristic: Advances and Trend in Local Search Paradigms for Optimization, Kluwer,
(1998), pp. 1-18.

[3] J. Bautista, J. Pereira, ant Colonies for the RCPS Problem, LNCS Vol. 2504, Springer-Verlag, (2002), pp.
257-268.

[4] k. Bouleimen, H. Lecocq, A new efficient simulated annealing algorithm for the resorce-constrained project
scheduling problem, Technical Report, Service the Robotique et Automatisation, Universit the Lige, (1988).

[5] E.W. Davis, J.H. Patterson, A comparison of heuristics and optimum solutions inresource constrained
project scheduling, Management Science 21 (1975) pp. 944-955.

[6] R.F. Deckro, E.P. winkofsky, j.E. Herbert, R. Gangon, Decomposition approach to multi-project scheduling,
Eur. J. of Oper. Res. 51 (1991), pp. 110-118.

[7] R. Elsasser, M. Gairing, T. Lucking, M. Mavronicolas, and B. Monien B, A simple Graph-Theretic Model for
Selfish restricted Scheduling, Lect. Notes in Computer Science 3828 (2005) pp. 195-209.

[8] A. Garrido, M.A. Salido, F. Baber, M.A. López, Heuristic Methods for Solving Job-Shop Scheduling
Problems, Citeseer 2000, url: citeseer.ist.psu.edu.

[9] S. Kim, R.C. Leachman, Multi-project scheduling with explicit lateness costs, IIE Transactions 25 (1993) 34.
[10] R. Kolisch, S. Hartmann, heuristic Algorithms for solving the resource-constrained project scheduling

problem. Classification and computational analysis, Handbook on Recent Advances in Project Scheduling,
Kluwer Amstterdam, (1988).

[11] R. Kolish, Serial and parallel resorce.constrained project scheduling methods revisited: Theory and
computation, European Journal of Operational Research Vol. 90, (1996), pp. 320-333.

[12] N. melba, M. Mezmaz, E.-G. Talbi, Parallel cooperative meta-heuristic on the computational grid. A case
study: the bi-objetive Flow-Shop problem, Elsevier Parallel Computing 32 (2006), pp. 643-659.

[13] K.S. Naphade, S.D. Wu, R.H. Storer, Problem space search algorithms for resource-constrained project
scheduling, Annals of Operations research 70 (1997), pp. 307-326

[14] J.H. Patterson, A comparison of exact approaches for solving the multiple constrained resorce project
scheduling problem, Management Science 30 (1984), pp. 854-867.

[15] M.G. Ravetti, F.g. Nakamura, c. Meneses, M. Resende, G. Mateus, P. Pardalos, Hybrid Heuristics for the
permutation flow shop problem, Teach. Report AT&T Labs TD-6V9MEV, 2006.

https://www.researchgate.net/publication/222938913_Insertion_Techniques_for_Static_and_Dynamic_Resource_Constrained_Project_Scheduling?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/222938913_Insertion_Techniques_for_Static_and_Dynamic_Resource_Constrained_Project_Scheduling?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/222938913_Insertion_Techniques_for_Static_and_Dynamic_Resource_Constrained_Project_Scheduling?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/242916374_Problem_space_search_algorithms_for_resource-constrained_project_scheduling?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/242916374_Problem_space_search_algorithms_for_resource-constrained_project_scheduling?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/227445528_A_Comparison_of_Exact_Approaches_for_Solving_the_Multiple_Constrained_Resource_Project_Scheduling_Problem?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/227445528_A_Comparison_of_Exact_Approaches_for_Solving_the_Multiple_Constrained_Resource_Project_Scheduling_Problem?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/223589211_Parallel_cooperative_meta-heuristics_on_the_computational_grid_A_case_study_the_bi-objective_Flow-Shop_problem?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/223589211_Parallel_cooperative_meta-heuristics_on_the_computational_grid_A_case_study_the_bi-objective_Flow-Shop_problem?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/228543024_Hybrid_heuristics_for_the_permutation_flow_shop_problem?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/228543024_Hybrid_heuristics_for_the_permutation_flow_shop_problem?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/239806525_Heuristic_Algorithms_for_the_Resource-Constrained_Project_Scheduling_Problem_Classification_and_Computational_Analysis?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/239806525_Heuristic_Algorithms_for_the_Resource-Constrained_Project_Scheduling_Problem_Classification_and_Computational_Analysis?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==
https://www.researchgate.net/publication/239806525_Heuristic_Algorithms_for_the_Resource-Constrained_Project_Scheduling_Problem_Classification_and_Computational_Analysis?el=1_x_8&enrichId=rgreq-92affb4caa0dfe56478429b65c15ca4b-XXX&enrichSource=Y292ZXJQYWdlOzI4MjgxNTE1MTtBUzoyODQxMjUwNDgxMzE1ODZAMTQ0NDc1MjA5ODU2Mg==

374

Guillermo, De Ita Luna
Did his BTech in Computer Science in the Faculty of Computer Sciences BUAP, Puebla. The
master and Ph. D. Program in Electrical Engineering in the Cinvestav – I.P.N., México. He has
worked for 10 years as a developer and consulter for Database Systems and Geographic
Information System in different enterprises in México.
He has been thesis advisor of 30 works for obtaining the BTech and Master Sciences in Computer
Sciences. And he has published more than 35 scientific articles.
He has done researching stages in Chicago University, Texas A & M University, INAOEP –
Puebla, and recently (2009) in the Computer Sciences, BUAP – Puebla.

Yolanda, Moyao Martínez
Did her BTech in Computer Science in the Faculty of Computer Sciences BUAP, Puebla. The master Sciences in

patterns recognition in the Faculty of Computer Sciences BUAP, Puebla, México.
She has been thesis advisor of 15 works for obtaining the BTech in Computer Sciences. And she
has published three scientific articles.
Currently she is a researcher – professor of the Faculty of Computer Sciences, BUAP Puebla.

Marcela Concepción, Soriano Orozco

Just finished her BTech in Computer Science Engineering in the Faculty of Computer Science
BUAP, Puebla. She studied English as Second Language at Miracosta College, California.
Currently she is improving her skills to enroll at University of California, San Diego for getting a
Master Degree in Computer Science.

Juan Carlos, Catana Salazar

Catana Juan graduate from the Faculty of Computer Sciences BUAP, Puebla. He is a Computer
Technician for CBTis No. 44 Teziutlan, Puebla.
* Faculty of Computer Sciences, Universidad Autónoma de Puebla

